
Week 13 - Friday



 What did we talk about last time?
 Heap implementation
 Heap sort













 Timsort is a recently developed sorting algorithm used as the 
default sort in Python

 It is also used to sort non-primitive arrays in Java
 It's a hybrid sort, combining elements of merge sort and insertion 

sort
 Features
 Worst case and average case running time: O(n log n)
 Best case running time: O(n)
 Stable
 Adaptive
 Not in-place



 We also want to find "runs" of data of two kinds:
 Non-decreasing: 34, 45, 58, 58, 91
 Strictly decreasing: 85, 67, 24, 18, 7

 These runs are already sorted (or only need a reversal)
 If runs are not as long as a minimum run length determined by the 

algorithm, the next few values are added in and sorted
 Finally, the sorted runs are merged together
 The algorithm can use a specially tuned galloping mode when 

merging from two lists
 Essentially copying in bulk from one list when it knows that it won't need 

something from the other for a while



 It might be useful to implement Timsort in class, but it has a 
lot of special cases

 It was developed from both a theoretical perspective but also 
with a lot of testing

 If you want to know more, read here:
 https://www.infopulse.com/blog/timsort-sorting-algorithm/

https://www.infopulse.com/blog/timsort-sorting-algorithm/


 Understanding how sorts work can be challenging
 Understanding how running time is affected by various 

algorithms and data sets is not obvious
 To help, there are many good visualizations of sorting 

algorithms in action:
 http://www.youtube.com/watch?v=kPRA0W1kECg
 https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

http://www.youtube.com/watch?v=kPRA0W1kECg
https://www.cs.usfca.edu/%7Egalles/visualization/ComparisonSort.html




 We can use a (non-binary) tree to record strings implicitly where 
each link corresponds to the next letter in the string

 Let's store:
 ba
 bar
 bat
 barry
 can
 candle
 as



a

s

b

a

r

r

y

t

c

a

n

d

l

e



 Now you add:
 he
 she
 her
 help
 sat
 rat



public class Trie {
private static class Node {
public boolean terminal = false;
public Node[] children = new Node[128];

}

private Node root = new Node();
}



Signature for recursive method:

private static boolean contains(Node node, String 
word, int index)

Called by public proxy method:

public boolean contains(String word) {
return contains(root, word, 0);

}



Signature for recursive method:

private static void insert(Node node, String word, 
int index)

Called by public proxy method:

public void insert(String word) {
insert(root, word, 0);

}



private static void inorder(Node node, String prefix)

Called by public proxy method:

public void inorder(String word) {
inorder(root, "");

}



 Let m be the length of a particular string
 Find Costs:
 O(m)

 Insert Costs:
 O(m)



 Keeping an array of length equal to all possible characters 
(usually) wastes space

 Alternatives:
 Ternary search tries: A lot like a binary search tree, with smaller 

characters to the left, larger characters to the right, and 
continuations from the current character beneath
 Keeping an array (or linked list) of the characters used, resizing as 

needed







 Finish tries
 Substring search



 1:45 – 2:45 office hours canceled today because of AI Task 
Force

 Work on Project 4
 Finish Assignment 7
 Due tonight by midnight!

 Read Section 5.3


	COMP 2100
	Last time
	Questions?
	Project 4
	Assignment 7
	Finish Bubble Down
	Timsort
	Timsort
	Ideas behind Timsort
	Timsort implementation
	Sort visualizations
	Tries
	Storing strings (of anything)
	Trie this on for size
	Trie practice
	Trie implementation
	Trie Contains
	Trie Insert
	Trie Traversal
	Cost
	Trie implementations
	Quiz
	Upcoming
	Next time…
	Reminders

