
Week 13 - Friday



 What did we talk about last time?
 Heap implementation
 Heap sort













 Timsort is a recently developed sorting algorithm used as the 
default sort in Python

 It is also used to sort non-primitive arrays in Java
 It's a hybrid sort, combining elements of merge sort and insertion 

sort
 Features
 Worst case and average case running time: O(n log n)
 Best case running time: O(n)
 Stable
 Adaptive
 Not in-place



 We also want to find "runs" of data of two kinds:
 Non-decreasing: 34, 45, 58, 58, 91
 Strictly decreasing: 85, 67, 24, 18, 7

 These runs are already sorted (or only need a reversal)
 If runs are not as long as a minimum run length determined by the 

algorithm, the next few values are added in and sorted
 Finally, the sorted runs are merged together
 The algorithm can use a specially tuned galloping mode when 

merging from two lists
 Essentially copying in bulk from one list when it knows that it won't need 

something from the other for a while



 It might be useful to implement Timsort in class, but it has a 
lot of special cases

 It was developed from both a theoretical perspective but also 
with a lot of testing

 If you want to know more, read here:
 https://www.infopulse.com/blog/timsort-sorting-algorithm/

https://www.infopulse.com/blog/timsort-sorting-algorithm/


 Understanding how sorts work can be challenging
 Understanding how running time is affected by various 

algorithms and data sets is not obvious
 To help, there are many good visualizations of sorting 

algorithms in action:
 http://www.youtube.com/watch?v=kPRA0W1kECg
 https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

http://www.youtube.com/watch?v=kPRA0W1kECg
https://www.cs.usfca.edu/%7Egalles/visualization/ComparisonSort.html




 We can use a (non-binary) tree to record strings implicitly where 
each link corresponds to the next letter in the string

 Let's store:
 ba
 bar
 bat
 barry
 can
 candle
 as
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 Now you add:
 he
 she
 her
 help
 sat
 rat



public class Trie {
private static class Node {
public boolean terminal = false;
public Node[] children = new Node[128];

}

private Node root = new Node();
}



Signature for recursive method:

private static boolean contains(Node node, String 
word, int index)

Called by public proxy method:

public boolean contains(String word) {
return contains(root, word, 0);

}



Signature for recursive method:

private static void insert(Node node, String word, 
int index)

Called by public proxy method:

public void insert(String word) {
insert(root, word, 0);

}



private static void inorder(Node node, String prefix)

Called by public proxy method:

public void inorder(String word) {
inorder(root, "");

}



 Let m be the length of a particular string
 Find Costs:
 O(m)

 Insert Costs:
 O(m)



 Keeping an array of length equal to all possible characters 
(usually) wastes space

 Alternatives:
 Ternary search tries: A lot like a binary search tree, with smaller 

characters to the left, larger characters to the right, and 
continuations from the current character beneath
 Keeping an array (or linked list) of the characters used, resizing as 

needed







 Finish tries
 Substring search



 1:45 – 2:45 office hours canceled today because of AI Task 
Force

 Work on Project 4
 Finish Assignment 7
 Due tonight by midnight!

 Read Section 5.3
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